Abstract:Recent advancements in video understanding within visual large language models (VLLMs) have led to notable progress. However, the complexity of video data and contextual processing limitations still hinder long-video comprehension. A common approach is video feature compression to reduce token input to large language models, yet many methods either fail to prioritize essential features, leading to redundant inter-frame information, or introduce computationally expensive modules.To address these issues, we propose FiLA(Fine-grained Vision Language Model)-Video, a novel framework that leverages a lightweight dynamic-weight multi-frame fusion strategy, which adaptively integrates multiple frames into a single representation while preserving key video information and reducing computational costs. To enhance frame selection for fusion, we introduce a keyframe selection strategy, effectively identifying informative frames from a larger pool for improved summarization. Additionally, we present a simple yet effective long-video training data generation strategy, boosting model performance without extensive manual annotation. Experimental results demonstrate that FiLA-Video achieves superior efficiency and accuracy in long-video comprehension compared to existing methods.
Abstract:Transformers are successfully applied to computer vision due to their powerful modeling capacity with self-attention. However, the excellent performance of transformers heavily depends on enormous training images. Thus, a data-efficient transformer solution is urgently needed. In this work, we propose an early knowledge distillation framework, which is termed as DearKD, to improve the data efficiency required by transformers. Our DearKD is a two-stage framework that first distills the inductive biases from the early intermediate layers of a CNN and then gives the transformer full play by training without distillation. Further, our DearKD can be readily applied to the extreme data-free case where no real images are available. In this case, we propose a boundary-preserving intra-divergence loss based on DeepInversion to further close the performance gap against the full-data counterpart. Extensive experiments on ImageNet, partial ImageNet, data-free setting and other downstream tasks prove the superiority of DearKD over its baselines and state-of-the-art methods.
Abstract:Transformers have shown preferable performance on many vision tasks. However, for the task of person re-identification (ReID), vanilla transformers leave the rich contexts on high-order feature relations under-exploited and deteriorate local feature details, which are insufficient due to the dramatic variations of pedestrians. In this work, we propose an Omni-Relational High-Order Transformer (OH-Former) to model omni-relational features for ReID. First, to strengthen the capacity of visual representation, instead of obtaining the attention matrix based on pairs of queries and isolated keys at each spatial location, we take a step further to model high-order statistics information for the non-local mechanism. We share the attention weights in the corresponding layer of each order with a prior mixing mechanism to reduce the computation cost. Then, a convolution-based local relation perception module is proposed to extract the local relations and 2D position information. The experimental results of our model are superior promising, which show state-of-the-art performance on Market-1501, DukeMTMC, MSMT17 and Occluded-Duke datasets.